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Abstract  

The present paper describes the framework and results of 
experiments aiming at developing computational methods 
to predict perceived image quality and perceived attributes, 
based on digital image data. Subjective judgments of 
overall contrast, sharpness, lightness, colorfulness, and 
quality were collected for 126 images presented on the 
monitor screen. For the analysis, digital images were 
represented in CIELAB color space, which was used as an 
approximation of the perceptually uniform color space. We 
utilized a computational vision approach and showed that 
all global attributes, including quality, can be predicted 
based on the combination of features (image properties) 
that could be considered as relevant elements at different 
levels of mental representation. The dependence of the 
global attributes upon the same features explains their 
mutual correlations, a known empirical fact. The 
regression results look very promising but require further 
refinement in terms of the feature assessment. 

Introduction 

Rapidly growing numbers of applications and services 
related to digital imaging and digital photography 
emphasize the output image quality as one of their most 
important product attributes. Delivery of these applications 
and services require the development of elaborate image 
processing techniques to maintain and, if necessary, 
enhance the perceived image quality of each individual 
image. An intelligent image processing system, that can 
selectively apply specific image processing or image 
enhancement techniques to any given image can 
potentially save processing time associated with the 
application of image processing algorithms, and can 
improve customer satisfaction by enhancing the perceived 
quality of pictures that will benefit from this processing. 
Predicting perceived quality from image data in an 
automatic fashion, and determining a particular image 
characteristic or attribute that may need improvement, 
therefore becomes an increasingly important part of such 
an intelligent imaging system.  

Approaches to Image Quality 

There currently exist several directions in pictorial image 
quality research that were initially developed for specific 
purposes. These approaches are usually implemented in 
conjunction with certain experimental methods and 
empirical models used to explain the data. Among them we 
can differentiate: 
 
Psychophysical or Psychometric Approach 

Within this approach, subjective image quality 
judgments and their biases became the main subject of 
investigation. This work was pioneered Eastman Kodak 
Company researchers: MacAdam1 and Bartleson.2 and 
further developed by other researchers.3,4 A central premise 
of this research is that perceived attributes can be measured 
using perceptual scaling techniques and that a relationship 
may be derived to explain the connection between a 
physical or system parameter and the perceptual scale. 
Image quality is then understood as an aggregate of 
perceived image attributes. 
 
System-Based Approach 

The goal of this approach is to establish a set of 
specific system parameters to attain reproduction aims. 
According to this approach parameters that describe the 
performance of a capture or a reproduction imaging system 
are set to produce images according to the defined 
specification. Image quality is then regarded as a certain 
quantifiable level of such performance. Usually this 
approach considers a single aim or a few aims that would 
satisfy a broad range of images, and thus characterizes the 
system performance in terms of the perceived quality of an 
average or representative set of images. The approach has 
proven to be a useful tool for optimization of various 
system parameters. The main challenges of this approach 
are: a scene dependency, because aims for the images of 
different scenes could be different (example, a portrait 
image compared to a scenic image), and a system 
dependency: a new reproduction method or a system that 
incorporates novel technical solutions, brings new 
parameters that may require the reassessment of the system 
performance. For example, a tone-reproduction curve, as a 
system parameter relevant to the system contrast, could be 
replaced by the scene-dependent tone scale. This process 
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produces results difficult to predict, based on the concept 
of the tone scale as a smooth monotonic function and 
related concept of an input image as an average image for 
the on-aim photography. 

Signal Processing Based Approach 
This approach originated from the need to measure 

and compare physical or technical properties (e.g., 
resolution, bit depth, noise, histogram, compression rate, 
quantization error, etc.) of digital images and image 
transformations (filtering, sampling, interpolation, etc.) 
with respect to output quality. Because these properties are 
not directly related to the observer’s “psychological 
reality,” their estimation originally did not include 
observer’s perception. This methodology is a broadening of 
the signal processing approach. An image is thus 
considered to be a complex signal, and image quality is 
treated as a measure of this signal. From this, such metrics 
as signal-to-noise ratio, root-mean-square error, etc., were 
derived and used with respect to image quality. Within the 
context of this approach, a human observer is implicitly 
understood as another technical device that captures and 
registers physical complex signals. Although useful in 
specific instances, this paradigm is limited in its capability 
for generalization.  
 
A Low Vision-Based Approach 

This approach, commonly referred to as vision 
modeling was pioneered during the early 1990’s5,6 and has 
received significant attention since.7 It originated from the 
need to assess threshold level changes in an image due to 
processing techniques, such as image compression, 
filtering, sampling, etc. This approach can be considered as 
an integration of low-level vision data obtained in 
psychophysics to enable differential response for complex 
images. The output of the visual model-based algorithm 
could be described as a measure of visual difference 
between a reference image and an image under 
consideration. Although the vision model-based approach 
has demonstrated important successes in simulating low 
level visual processes,8 its main challenges, with respect to 
image quality, are associated with difficulties in 
formulating a combination metric that allows for the 
integration of spatially localized difference maps into a 
single visually adequate global measure of visual 
difference, and the absence of a clear relationship between 
absolute visual difference and image quality. Because it is 
impossible to infer which image from a pair of images has 
higher quality considering only a visual difference map, 
the image quality concept within this approach is reduced 
to the concept of image fidelity with a crucial role of the 
reference (original) image, frequently understood as having 
optimal quality. In addition, higher-level visual processes, 
which have not yet been incorporated into these models 
(e.g., constancy, attention, subjective importance of 
different regions of the image), may significantly influence 
the judgment of the visual difference and, consequently, 
the predictive power of the model.   

Information Processing Approach 
A very novel and powerful approach was recently 

proposed in an attempt to explain experimentally observed 
discrepancy between judgments of naturalness and quality  
preferences.9-11 This approach emphasizes visual 
information processing in understanding and modeling of 
perceived image quality.12 Assuming that visual processing 
of images is a goal-directed process, and stressing its active 
nature from the observer’s stand point, the suggested 
approach formulates then image quality as the degree of 
the adequacy of the image as input to the vision stage of 
the interaction process. Two requirements are proposed in 
considering this adequacy: discriminability and 
identifiability of the image content. The fruitfulness of this 
paradigm was demonstrated by developing computational 
methods to define colorfulness, naturalness and quality for 
images subjected to global variations along perceptual 
dimensions in color space.11 It was not clear, however, how 
the particular implementation of this approach if strictly 
followed could lead to predicting quality of an arbitrary 
image from an arbitrary source. 

The provided classification is relative, in a sense that 
often there is a combination of the approaches in any given 
investigation. However, they still can be recognized by 
their primary focus and applied methods. A very useful 
way to visualize their specialty could be derived from the 
diagram of Image Quality Circle suggested by 
Engeldrum,13 if one could imagine a short link to quality 
determination from the appropriate blocks in the circle that 
denote components of the chain that relate technology 
variables (system parameters) of the imaging system to 
resulting customer quality preferences. 

Below we describe the paradigm that could be utilized 
to integrate advantages and unique knowledge obtained 
through various approaches. The paradigm is very closely 
related to the information processing approach suggested 
by Janssen.12 However, rather then considering information 
processing in general, we would like to make a main 
emphasis on the understanding of vision process as a 
structure of multiple levels of mental representation, a 
notion that allows us to more fully explore perceptual 
properties of images with respect to image quality.  

Computational Vision as a Paradigm Toward 
Image Quality 

Computational vision is a multidisciplinary field that 
integrates a number of disciplines:  neurophysiology, 
psychology, and artificial intelligence, which considers 
vision as a computational process and “emphasizes 
information, knowledge, representation, constraints, and 
processes, rather than details of mechanisms.”14 Within the 
computational approach to vision that is described in a 
number of papers,14, 15 a vision system is often structured as 
a succession of levels of representation. The initial levels 
are constrained by what is possible to compute directly 
from the image, while higher levels are dictated by the 
information required to support the ultimate goal. In 
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between, the order of representation is constrained by what 
information is available at preceding levels and what is 
required by succeeding levels. For example, the sensing 
process, which takes place in early vision, enables 
conversion from light flux incident on a photosensitive 
receptor array to a brightness measurement by the 
photosensing mechanism that often involves spatial 
quantization. The next stage of processing attempts to 
detect spatial and temporal changes such as discontinuities 
in brightness or brightness gradient, line ending or local 
anomalies in a homogeneous field, in the image and to 
make them explicit. The output representation is an array 
with feature description recorded at each location. Marr’s 
raw primal sketch is an example of a suitable 
representation for image features.15 The raw primal sketch 
uses three kinds of primitives to describe intensity changes: 
various types of edge, lines or thin bars, and blobs. Each is 
characterized in terms of orientation, size (length and 
width, or a blob’s diameter), contrast, position, and 
termination points.  

The local edge and blob description in the raw primal 
sketch must be organized into spatially coherent units (e.g., 
boundaries and regions) for subsequent analysis. Some 
basic grouping processes occur at this stage; organizing 
elements into straight lines and smooth curves, and to 
cluster elements into regions of textures. This stage 
corresponds to what Marr denoted as a full primal sketch.  

Palmer,16 using Marr’s theoretical framework as a 
foundation, decomposed visual perception at the 
algorithmic level into four major stages beyond the retinal 
image itself. Each stage is defined by a different kind of 
output representation and the processes that are required to 
compute it from the input representation. Applying the 
labeling scheme from the information processing approach, 
each stage is named according to the kind of information it 
represents explicitly: the image based, surface-based, 
object-based, and category-based stages of perception. 

The computational vision approach seems to be a 
powerful paradigm for understanding and modeling 
perceived image quality. The fruitfulness of the 
information processing approach to computationally define 
image quality and naturalness has already been 
demonstrated by Endrikhovski and Janssen.11,12 Our 
previous research to predict perceived overall contrast from 
digital image information using a computational vision 
paradigm yielded promising results.17  

We believe that a fully implemented computational 
vision framework will allow us to overcome major 
limitations of the existing approaches to image quality, 
namely, algorithm dependency, system dependency, and 
scene dependency, by considering image properties 
relevant to appropriate levels of mental representations of a 
scene, as well as expressing and measuring the scene in 
terms of their adequacy to human visual and cognitive 
processes. Therefore, image quality can be understood as a 
measure of a multi-level interaction between the user and 
an image. 
 

We propose the following assumptions: 
 
1) Judgments of perceived image quality, as well as 

overall attributes (e.g., overall contrast, overall 
lightness, colorfulness, etc.), are derived from certain 
mental representations and, therefore, can be analyzed 
with respect to their corresponding elements. 

2) Perceived image quality and perceived overall 
attributes, as related to the integral impression from 
the image, may involve elements from multiple levels 
(or stages) of representation. 

3) The elements relevant to the perceived attributes and 
quality can be computationally evaluated and, 
therefore, the prediction of perceived attributes and 
quality can be calculated. 

4) In perceived quality and attribute predictions, the 
elements measured can be combined.  

 
We think that allowing multiple representations and 

plurality of perceptually relevant elements to contribute to 
perceived image quality assessment might help to solve the 
existing problems of scene, algorithm, and system 
dependency, with respect to image quality modeling. In 
principle, all perceptually, and broadly, psychologically-
defined representations can be considered as giving rise to 
quality judgments. Already mentioned are: sensory array 
(retinal image, input image, intensity image, or color array 
are different terms used by different authors), image-based 
stage, surface-based stage, object-based stage, and 
category-based stage.16 Additionally, other kinds of 
representations can potentially be included, e.g., 
emotionally related, symbol-, or metaphor-related. 
However, the difficulty lies in defining relevant scene 
entities for those representations and assessing them in a 
systematic manner.  

Examples of relevant elements that characterize events 
at each stage of visual processing for different 
representations are array elements for the sensory array 
representation, considered both in a spatial and frequency 
domain. Edges, lines, or regions for the image-based 
representation; local patches of 2D surface at some slant, 
located at some distance, could be considered as the 
elements for the surface-based representation; while 
volumetric primitives are the entities for object-based 
representation, etc. Elements can be associated with a 
number of descriptors, for example, size, orientation, 
contrast, position, as well as statistics. We will call these 
descriptors as features.  

There are a variety of possible combination rules that 
can be applied to combine the features, for example, 
Minkowski metric with different exponents. The linear 
summation is the simplest combination rule, which we will 
consider in this paper.  

In this case, if F = F1,…, Fn is the set of measurements 
performed for the corresponding n features, and A = A1,…, 
Am – a set of m overall image attributes, then A = F · B, 
where B is the nxm- matrix of weights, assigned to those 
features. 
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To test whether this approach is useful for assessing 
overall perceived image quality, as well as other attributes 
based on image information, we performed a series of 
experiments. In these experiments, subjects evaluated 
overall quality, contrast, sharpness, lightness, and 
colorfulness of images of natural scenes. Subsequently, 
their judgments were compared with the measurements of 
features extracted from the observed images.  

Experiments 

Images and Viewing Conditions 
One hundred twenty six (126) images were chosen for 

the experiments, representing a variety of scenes, such as 
indoor and outdoor pictures, different seasons, people in 
groups and close-up portraits, animals, and images taken 
under different lighting conditions (e.g., flash, bright sun, 
twilight, shadows, etc.). The scenes were photographed 
using color negative film, and digitized with a high-
resolution digital scanner. In the stimulus set, 111 pictures 
were unique color scenes and 15 images were black-and-
white versions of some selected color scenes. All images 
were landscape-oriented. The images varied in their quality 
and attribute strength as a result of problems at capture 
(e.g., an indoor picture with an electronic flash) or because 
of specific scene characteristics (e.g., a backlit scene or 
misty conditions). High-resolution digital image files were 
interpolated to obtain a 966 x 654 image size, which was 
used in the experiments. Stimuli were viewed on a 21" 
CRT display. White point of the CRT was set to D65. Peak 
screen luminance was 21 foot-lamberts and the resolution 
was 1152 x 870. Subjects sat at a distance of 39 inches 
from the display. Indirect fluorescent lighting produced an 
ambient illumination level of 20 lux measured at the 
screen. An adapting neutral field with a luminance of 3.5 
foot-lamberts served as a background for image 
presentation (this level corresponded to an L* value of 
approximately 50). The visual angle of the stimuli was 
15.5 x 10.5 degrees.  

Subjects 
Seven subjects participated in the experiments. They 

had normal or corrected-to-normal visual acuity and 
normal color vision. Their ages ranged from 30 to 50 years. 
Every subject participated in 6 separate experiments, with 
2 sessions per experiment, where they were asked to rate 
overall quality, overall contrast, overall lightness, overall 
colorfulness, overall sharpness, and main subject 
sharpness. The order of the experiments was randomly 
assigned for each participant.  

Attribute Definitions 
The following definitions were provided to the 

subjects: 
 
Perceived Overall Contrast was defined as an 

integrated impression of differences in lightness, or 
lightness variation observed within the whole picture. 

Overall Sharpness was the overall impression of 
clarity of edges observed within the whole picture.  

Overall Colorfulness was defined as the impression of 
presence and vividness of colors in the whole picture. 

Overall Lightness was defined as the impression of the 
lightness level that an image produces. 

Perceived Quality was defined as the degree of 
excellence of the reproduction. 

Main Subject Sharpness was defined as the overall 
impression of clarity of edges on the primary subject. 

Session Procedure 
Stimulus presentation was randomized, with every 

image presented twice in each experiment. Time 
presentation for every image was not limited. However, 
subjects were encouraged to reply promptly by using a 
slider displayed at the bottom of the screen below the 
image. The subjects used the slider to identify a position on 
the scale from 0 to 100, which would reflect the strength of 
the attribute under consideration. Perceived quality and 
other attributes were evaluated using a free modulus 
magnitude estimation technique, where observers are not 
given a reference image for the attribute; instead, they use 
their own internal reference. Before the actual session, a 
short trial session was run for every subject to ensure that 
subjects understood the instructions and felt confident 
about the scaling technique. During the trail session 10 to 
20 stimuli were presented to assess the degree of 
confidence and response consistency. Average time for an 
experimental session was 45 minutes with a break to avoid 
fatigue.  

Image Analysis 

We considered representations relevant to the sensory stage 
and image-based stage as appropriate candidates for feature 
selection. Although, ideally, a vision model of low level 
visual processing should be used to transform a physical 
image, comprised of pixels, into a “sensory array” 
representation, for the practical purposes of simplification, 
we approximated this representation by describing image 
pixels in CIELAB color space, hoping that this 
approximation would be sufficient in demonstrating the 
objectives: namely, the applicability of the computational 
vision approach to image quality. 

For the array representation in the spatial domain we 
selected features that included descriptive statistics for 
CIELAB pixel distributions of lightness, chroma, and hue 
angle. Statistical moments: mean, standard deviation, 
skewness and kurtosis, other statistics, such as maximum 
and minimum values, were among the features, as well as 
their combinations. For example, a range contrast feature 
was calculated using the formula for Michelson contrast, 
expressed as a ratio of the difference between maximum 
and minimum lightness values to their sum.  

To minimize computation time, all these features were 
calculated for the low-resolution images obtained by 
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averaging blocks of 8 x 8 pixels and scaling down the 
image.  

For the frequency domain, energy in various frequency 
bands, as well as ratios were computed using the original, 
high-resolution image. 

For the image-based stage, we used edge-related and 
region-related descriptors. Edge contrast feature was 
approximated by the standard deviation of lightness 
differences between adjacent pixels of the low-resolution 
image. The color area contrast feature was computed as the 
average pair-wise difference between mean CIELAB 
values for the regions multiplied by the number of regions 
identified in the image.  

The regions were obtained by applying an image 
segmentation algorithm  to the low-resolution image.18 

Other edge characteristics were determined from the 
full-resolution image. In this case, we used an edge 
detection method to first identify edges. For all edge pixels 
edge height, edge gradient and edge width were computed. 
Mean and maximum values for all of these characteristics 
were used as features.  

The choice of a particular numerical way for the 
feature assessment was driven by “visual” sense and 
simplicity considerations. It is obvious, however, that this 
assessment can be refined and tied to psychophysically 
established data.  

Results 

Judgments of image quality and overall perceived 
attributes were averaged across subjects and used for a 
subsequent multiple regression analysis to estimate the 
contribution of all computed features to the perceived 
attributes. We used a stepwise regression method to choose 
the best feature combination for every attribute. An 
additional consideration was to minimize a total number of 
features participating in the prediction models.  

Figure 1 illustrates the results of overall contrast 
prediction based on the regression analysis. Seven features 
were identified as significantly contributing to the 
prediction: maximum lightness, maximum chroma, a 
distance of the mean image lightness from the background 
lightness, range contrast, edge contrast, mean edge 
gradient, and color area contrast. The linear combination of 
the measures produces a prediction of the overall perceived 
contrast with the multiple correlation coefficient of 
approximately 0.77. 

Given the simplifications we used with respect to the 
feature computation, a large variety of color and black-
and-white scenes, and the complexity of the subjects’ task 
to produce an estimate of overall perceived contrast, we 
felt satisfied with the demonstrated ability to predict 
subjective contrast judgments on an image-to-image basis 
using a simple linear model.  

  

Perceived Contrast versus Predicted Contrast
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Figure 1. Perceived overall contrast prediction based on a 
feature combination 

 
We obtained similarly encouraging results for other 

attributes. The features contributing to perceived quality 
and attribute predictions are listed in Table 1. As shown in 
this table, there are total of 13 different features identified 
as significant. While 4 features contribute to only 1 
attribute, e.g., mean lightness for overall lightness 
prediction or edge width for sharpness, other features 
systemically appear in the regression equations for many 
attributes. The overlap in the feature sets predicting 
different attributes, may be used to explain the empirically 
known observation that some attributes correlate with each 
other.  

Table 1. Feature Contribution to Perceived Attributes. 
Attribute 
 
Feature 
 

Con- 
trast 

Light- 
ness 

Sharp- 
ness 

Color- 
ful- 
ness 

 
 

Quality 

Maximum lightness + + + + + 
Maximum chroma + +  + + 
Mean lightness to 
background distance 

+  +  + 

Mean lightness  +    

Range contrast + + + + + 
St dev of chroma  +  +  
Spatial frequency 
band ratio 

 + +  + 

Edge contrast +     
Edge hue difference    +  
Max edge gradient  + +  + 
Mean edge gradient +  + + + 
Edge width   +   
Color area contrast +  +   
R squared 0.77 0.72 0.64 0.85 0.57 
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Figure 2. Perceived quality prediction. 

 
 
Comparing the coefficient of determination (R2) 

measure obtained for different attributes, one can notice 
that overall sharpness and, especially, quality turned out to 
be the most difficult to predict attributes: 0.64 for the 
sharpness prediction and 0.57 for the quality prediction, 
respectively. Figure 2 shows the regression plot for quality, 
illustrating that some images were considerably under- and 
over- predicted. One explanation for this finding, besides 
the argument about the necessity for better feature 
extraction methods, could lie in the apparent importance of 
the characteristics of the main subject rendering for 
assessing perceived quality and overall sharpness, one of 
the most critical attributes. The examination of the outliers 
for those predictions largely supported the assumption. 
Some of those images had the main subject not in focus 
(e.g., a close-up of a person’s face), while the rest of the 
picture was sharp. We tested this assumption by allowing 
the main subject sharpness assessment obtained in the 
experiments to be a candidate predictor during regression 
modeling. The main subject sharpness information was 
found to considerably improve model predictions for 
several attributes, including sharpness, contrast, and 
quality. At the same time, the majority of previously 
identified features were still significant. For example, for 
overall sharpness, prediction adding main subject sharpness 
to a predictor list increased the R2 value from 0.77 to 0.89. 
At the same time, 7 out of 8 previously determined features 
retained their significance, while only a maximum edge 
gradient dropped out. Analogous results were obtained for 
the quality prediction: the goodness of fit of the linear 
model improved to reach the R2 value of 0.82 (Fig. 3), and, 
yet, 5 out of 7 initially selected features were still present 
in the resulting predictive combination. This indicates that 
the main subject sharpness assessment contained important 
and unique information, which was not directly extracted 
from the list of computed features designed to represent an 
entire image.  

Perceived Quality versus Predicted Quality 
w ith Subject Sharpness 
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Figure 3. Perceived quality prediction improvement by adding 
main subject sharpness assessment. 

 
 
In the case of quality, the contribution of the main 

subject sharpness assessment was very substantial: this 
measure alone accounted for almost 70 percent of the 
variance. The latter observation points out that the 
sharpness of the main subject is a prevalent attribute 
determining quality, and the algorithmic identification of 
the main subject may be necessary for more precise 
prediction, especially when parts of an image are out of 
focus or have other types of problems.  

It is worth noting, however, that in many instances, 
features that are not specifically related to the main 
subject, but instead, describe the entire image may work 
well: when an image does not have local problems, or the 
main subject amounts to the entire image, as in the case of 
a landscape, etc.  

In the current experiments we did not consider higher 
level representations, e.g., object and category levels, and 
constraints imposed on image quality. We know, however, 
from the existing studies, that those characteristics are very 
important constituents of image quality and need to be 
included in a complete model. Incorporating the 
knowledge about higher level visual processing, image 
quality constraints, as well as further computational 
refinement of features at the lower levels, could be a next 
step for this research.  

Conclusions 

The results of the experiments demonstrate that the 
computational vision approach appears to be a promising 
paradigm to further advance the development of image 
quality modeling. 

Perceived image quality and image attributes can be 
described using a combination of features computationally 
extracted from the image data.  
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